DOCUMENT RESUME

ED 303 153 IR 013 623

AUTHOR Barger, Robert N.

TITLE On-Line Evaluation and Remediation of Programming
Skills.

PUB DATE Apr 88

NOTE 8p.; Paper presented at the Anaual Meeting of the

International Association for Computing in Education
(New Orleans, LA, April 5-9, 1988).

PUB TYPE Guides ~ Classroom Use - Guides (For Teachers) (052)
—- Computer Programs (101) -- Speeches/Conference
Papers (150)

EDRS PRICE ¥F01/PCO1 Plus Postage.

DESCRIPTORS *Computer Assisted Testing; =Evaluation Criteria;
*Programing; Programing Languages; Psychometrics;
Remedial Instruction; =Student Evaluation; Test
Construction

ABSTRACT

This procedure for testing the mastery of programming
skills uses online ta=sting and correction. The student is presented
with a test problem and is asked to solve it, encode the solution,
debug the code, and save it on a floppy disk. The instructor corrects
the program at the appropriate points through the use of REM
statements. The erroneous or inefficient student-written lines are
neutralized but retained in the REM statements so that they can be
compared by the student with the correct lines. A variant on this
procedure would have the instructor point out the place where an
error has occurred, but the student would make the coriections and
resubmit the test. Two sample questions with corrections in the BASIC
Programming Language are provided, although the procedure could be
adapted to many computer languages. (EW)

% Reproductions supplied by EDRS are the best that can be made
% from the original document.

*

*

***********xw*k:2*3**

£ED303153

RO13623

- s
Z 1 —_

U'S ODEPARTMENT OF ZOUCATION
Oftxce of Educational Research and mprovement
EDUCATIONAL RESOURCES INFCRMATION

CENTER (ERIC)

'This document has been reproduced as
recewed from the person or organizaton
onginatng it

 Minor changes have baen made 10 improve
resroguct on quahly

® Points ol view OF ODIMONS Statedin this doCu-
meat do not necessanly represent oftcial
QER1 position of polcy

ON—L. INE EVALUAT ION
AND REMEDIAT ION

OF FPROGRAMMMING SKILLS

by

Robert N. Barger, Ph.D.
Professor of Education
Eastern Illinois University
Charleston, Illinois 61920

“PERMISSION TO REPRODUCE THIS
MATERIAL HAS BEEN GRANTED BY

Robert N. Barger

TO THE EDUCATIONAL RESOURCES
INFORMATION CENTER (ERIC).”

A paper presented at the 1988 Annual Meeting of
tre International Association for Computing in Education
Rew Orleans, April 5-3, 1988

BEST COPY AVAILABLE

The procedure described below is adaptable for use in teating
mastery of programming skills in many computer languages. For
purposes of demonatration, the procedure will be outlined here as it
aight be applied to teating mastery of programming skilla in the
BASIC language.

In thia procedure, ‘instead of employing the traditional practice
of testing the student in off-line paper and pencil mode, the student
ia presented with a tesast problem and is aasked to solve it, encode the
solution on-line, debug the code, and save it on the student’s floppy
disk. The insatructor then collects the diak and runs and corrects the
teat program at hias/her leisure. This is done by inserting
corrections in the program at appropriate pointa through the use of
REN statementa. The corrections change erroneocus or inefficient lines
to executable or more efficient lines. The original errora or
inefficiencies are neutralized and retained in REN atatements on the
line before the corrected version so that the student can compare
hia/her original atatements with the instructor’s reviaions.
fdditicnel instructor commenta, elong with the student’a grade on the
teat, can be put in REM statements at the beginning or end of the
program. When the inatructor is finished evaluating and annotating
the program, it is re-saved on the floppy disk in it’s revised form
and returned to the atudent for review. If the instructor so desires,
he/ahe can also aave the gtudert’s revised marked-up program on an
archive disk before returning the atudent disk, and/or print out a
hard copy of the prograsa.

A variant of the above-deacribed procedure would have the
instructor use REM statements to point out where errors have occurred
in the tesat program. Instead of suppiving the corrected version by
rewriting the erroneous lines or supplying any missing linesa, the
instructor may have the student make the corrections and reasubmit the

test - perhapa giving some suggestiona, if it seenmns indicated, on how
this might be done.

This evaluation and remediation procedure is supported by two
psychoretric principles: 1) If the skill to be acquired in the course
involves the ability to do programming, then it is that askill which
sahould be tested, rather than testing how well the student can
memorize lecture or textbook material. Thus, in this proposed testing
precedure, the student is asked to actually write a program, rather
than to write ebout how to program, and 2) real-world conditions are
simulated, that is, the student has a time limit imposed (much as
there would be a deadline in real life), but the use of resources
such as notes, texte, and documentation is allowed (since these
materials wculd be available for reference in real-world saituations).
Also, when possible, the programming problem assigned should have
some evident real-world application (the sgample questions attached
are not good illustrations of this latter point).

)

page 2

Two sample questions (one a lab aasignment and the other a
periodic teat), along with corrected reaponseas to the queations as
handed back to the studenta who authored them, are given on the
attached pages for purposes of illuastration.

-

LABS8 ASSIGNMENT

SED 1099 LAES DR. BARGER

WRITE A PROGRAM THAT ACCEPTS AS INPUT A USER’S AGE AND THEN USES A
WHILE/WEND LOOP TO COMPUTE HOW MANY YEARS IT WILL BE BEFORE THAT
PERSON IS ONE HUNDRED YEARS OLD. THE OUTPUT SHOULD INFORM THE USER
HOW MANY YEARS IT WILL BE UNTIL HE/SHE IS ONE HUNDRED.

(]
\

= TR e - S ——— O — S —

LAES PFPROGRAM LISTING

{INSTRUCTORS COMMENTS IN LINES 1 - 9)

—

8

9

I ADDED LINE 11 TO CLEAR THE SCREEN AND TURN THE KEY OFF.

IN LINE 20, YOUR INPUT LABELLING SHOULD MAKE IT CLEARER TO THE USER WHAT
KIND OF INPUT YOU ARE EXPECTING, AND YOUR CHOICE OF A VARIABLE NAME SHOULD
BE MORE MEANINGFUL. SEE CORRECTION IN LINE 21.

IN LINE 30, THERE IS NO NEED TO INITIALIZE A VARIABLE NAMED ~ COUNTER'

SINCE YOU DON'T USE IT LATER IN THE PROGRAM.

IN LINE 40, THE WHILE' STATEMENT SHOULD TEST IF THE INPUT VARIABLE IS LESS
THAN 100. ALSO, YOU SHOULD KEEP VARIABLE NAMES CONSTANT BETWEEN LINES 20 AND
40. SEE CORRECTION IN LINE 41.

IN LINE 50, THE VARIABLE NAME NO.YEARS' SHOULD BE A BIT MORE MEANINGFUL.
SEE CORRECTION IN LINE 51.

IN LINE 60, YOUR ACCUMULATOR SHOULD BE FORMULATED ACCORDING TO THE
CORRECTED VERSION IN LINE 61.

THE FORMAT OF YOUR PRINT USING STATEMENT IN LINE 90 IS INCORRECT. SEE
CORRECTION IN LINE 91.

IN LINE 100, IN CREATING A LOOP YOU MUST INITIALIZE THE COUNTER " YRS.TO.100"
BEFORE YOU START THE LOOP. SEE CORRECTION IN LINES 101 AND 102.

LAB8 SCORE = 1 [OUT OF A POSSIBLE 2].

10 '"[STUDENT'S NAME APPEARS ON THIS LINE], LABS
11 CLS:KEY OFF

20 '"INPUT "YEARS OLD";YO

21 INPUT "HOW OLD ARE YOU NOW";AGE

30 'COUNTER = 0

40 '"WHILE NUMBER.OF.YEARS = 0

41 WHILE AGE < 100

50 'NO.YEARS = NO.YEARS + 1

51 YRS.TILL.100 = YRS.TILL.100 + 1

60 'TOTAL = 19 + 81

61 AGE = AGE + 1

80 WEND

90 '"PRINT USING "AFTER ## YEARS ,BEFORE #{#";NO.YEARS
81 PRINT "AFTER";YRS.TILL.100;"YEARS YOU WILL BE 100 YEARS OLD."
160 'GOTO 20

101 YRS.TILL.100 = O

102 GOTO 20

110 END

TEST3E QUESTION

SED 1099 TESTSE DR. BAKRGER

START YOUR PROGRAN WITH A °‘REN’ STATEMENT CONTAINING YOUR NANE.
THEN ADD A LINE WITH A STATEMENT TO CLEAR THE SCREEN AND TURN THE
KEY OFF. THEN WRITE PROGRAM LINES WHICH USE A ‘GOTO’ LOOP AND
‘READ’ AND ‘DATA’ STATEMENTS TO READ A SERIES OF PRICES (GIVEN
BELOW), AS EACH PNICE IS READ ADD IT TO AN ACCUMULATOR. ALSO, USE A
COUNTER TO KEEP TRACK OF HOW MANY PRICES HAVE BEEN READ. THEN
(WHILE STILL WITHIN THE LOOP> PRINT THE AVERAGE OF THE PRICES READ
SO FAR (DO THIS BY DIVIDING THE ACCUMULATOR BY THE COUNTER). THE
AVERAGE SHOULD BE PRINTED USING ([*PRINT USING’)] THE FOLLOWING
FORMAT: s##.## USE THE FOLLOWING DATA FOR THE PRICES: 3.146,
2.709, 67.1, 0.9328, 77.034, 5.45754. DON’T FORGET THE ‘END*
STATEXENT. THE OUTPUT SHOULD LOOK LIKE THIS:

8 3.15
8 2.93
824.32
818.47
£30.18
826.06
Out of Data in 30

-1

TESTE PROGRAM L ISTING

{INSTRUCTORS COMMENTS IN LINES 1 - 7)

1 ' LINE 50 SHOULD BE PLACED JUST BEFORE €0 AND SHOULD SAY SOMETHING LIKE:
REM READ STATEMENT FOR DATA. LINES 56 AND 60 SHOULD BE REVERSED - YOU MUST
FIRST READ THE PRICE AND THEN ADD IT TO THE ACCUMULATOR.

2 ' ALSO, YOU MUST ADD THE PRICE TO WHAT IS ALREADY IN THE ACCUMULATOR -
*ACCUMULATOR = O + PR' DOESN'T DO THIS, IT HAS TO BE: ACCUMULATOR =
ACCUMULATOR + PR

3 ' LINE 90 IS NOT NEEDED AND SHOULD BE OMITTED. LINE 100 SHOULD PRINT "AVE.PR',
NOT “PR'. THE ~GOTO' STATEMENT ON LINE 105 SHOULD LOOP BACK TO LINE 50 - NOT
LINE 40, OTHERWISE THE ACCUMULATOR WILL BE INITIALIZED AGAIN.

4 ' LINES WITHIN THE LOOP SHOULD BE INDENTED FOR EASE IN IDENTIFYING WHAT IS
GOING ON INSIDE THE LOOP.

5 ' SEE CORRECTED VERSION OF PROGRAM IN LINES 500-

6 ' TEST 3 = 6 POINTS [OUT OF A POSSIBLE 11]

7 ' PRESENT AVERAGE: PRINT 1.8+1.6+0.7+1.25+1.6+2+2+1.15+ 7+10+6

=35,1/ 11 = .7163265 = 72% = a high "D"

10 ' [STUDENT'S NAME APPEARS HERE], TEST3

20 CLS: KEY OFF
30 COUNTER = 0

40 ACCUMULATOR = 0
50 REM *%% INPUT DATA FOR READ STATEMENT *#*%*

55 COUNTER = COUNTER + 1

56 ACCUMULATOR = 0 + PR
60 READ PR
70 AVE.PR = ACCUMULATOR / COUNTER

00 PRINT “PRICE"; PR; ACCUMULATOR
100 PRINT USING "'$##.{##" ;PR
105 GOTO 40
110 REM *%% DATA USED BY READ STATEMENT #*#%*

120 DATA 3.146,

130 DATA 2.709
140 DATA 67.1
150 DATA 0.9328
160 DATA 77.034
170 DATA 5.45754
180 END
500 ' $7$7$7Z CORRECTED VERSION $7$7$7
510 CLS:KEY OFF
520 TOTAL.PRICE = 0
530 COUNTER= 0
540 READ PRICE
550 COUNTER = COUNTER + 1
560 TOTAL.PRICE = TOTAL.PRICE + PRICE
570 AVERAGE = TOTAL.PRICE / COUNTER
580 PRINT USING "$i#if.#{#'"; AVERAGE
590 GOTO 540
600 DATA 3.146,2.709,67.1,0.9328,77.034,5.45754
610 END

